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Abstract.
Algebraic multigrid (AMG) is a popular and effective solver for systems of linear equations that arise

from discretized partial differential equations. While AMG has been effectively implemented on large scale
parallel machines, challenges remain, especially when moving to exascale. In particular, stencil sizes (the
number of nonzeros in a row) tend to increase further down in the coarse grid hierarchy and this growth
leads to more communication. Thus, as problem size increases and the number of levels in the hierarchy
grows, the overall efficiency of the parallel AMG method decreases, sometimes dramatically. This growth in
stencil size is due to the standard Galerkin coarse grid operator, PTAP , where P is the prolongation (i.e.,
interpolation) operator. For example, the coarse grid stencil size for a simple 3D 7-point finite differencing
approximation to diffusion can increase into the thousands on present day machines, causing an associated
increase in communication costs. We therefore consider algebraically truncating coarse grid stencils to obtain
a non-Galerkin coarse grid. First, the sparsity pattern of the non-Galerkin coarse grid is determined by
employing a heuristic minimal “safe” pattern together with strength-of-connection ideas. Second, the nonzero
entries are determined by collapsing the stencils in the Galerkin operator using traditional AMG techniques.
The result is a reduction in coarse grid stencil size, overall operator complexity, and parallel AMG solve
phase times.
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1. Introduction. The goal of this paper is to introduce a non-Galerkin coarse grid
strategy that improves the parallel performance of algebraic multigrid (AMG) [6, 14]. AMG
is of interest because it is a popular and effective solver of large sparse linear systems in
parallel, by virtue of being scalable or optimal and solving a linear system with n unknowns
with only O(n) work. Consider solving the linear system

Ax = b, (1.1)

where x,b ∈ Rn. For the problems considered here, A ∈ Rn×n is assumed to be a symmetric
and positive definite (SPD) matrix.

There are two main components to a multigrid method: the smoother (or relaxation
method) and the coarse grid correction step. The coarse grid correction step involves
operators that transfer information between the fine and coarse “grids”, denoted more
generally by the space Rn and the lower dimensional (coarse) vector space Rnc . We focus on
classical Ruge-Stüben style AMG (RS-AMG) [14], which constructs the coarse space using
a disjoint F/C splitting of the fine grid unknowns, with the C-points forming the coarse
grid. We let P : Rnc → Rn be the interpolation (or prolongation) operator, and generally the
restriction operator is taken to be PT . Optimality is achieved when smoothing and coarse
grid correction are complementary. In the classical setting of scalar elliptic problems, this
means that the smoother is a simple iterative algorithm like Gauss-Seidel, which is effective
at reducing high frequency error. The remaining low frequency error is then accurately
represented and efficiently eliminated on coarser grids via the coarse grid correction step.
As a result, all error frequencies are uniformly damped with a linear cost. The two-grid
multigrid method for solving (1.1) is then defined in Algorithm 1. In practice, we use a
multilevel method to solve (1.1) by recursively applying Algorithm 1 to the correction step
in line 5. The proposed work considers replacing the Galerkin coarse grid operator PTAP
with a sparser approximation Ac, which maintains the AMG convergence rate, but improves
parallel efficiency.
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Algorithm 1: Twogrid(A,x,b)

1 Input: A {Matrix}
2 x {Initial guess to linear system}
3 b {Right-hand-side vector}
4 Relax ν1 times on Ax = b

5 Correct x← x + P (PTAP )−1PT (b−Ax)
6 Relax ν2 times on Ax = b
7 return x

Controlling the sparsity pattern of PTAP is important because AMG (including the
target BoomerAMG package in hypre) produces coarse grids with a maximum coarse grid
stencil size that grows with problem size. This is problematic in parallel, because as stencil
size increases on coarser levels, standard matrix partitioning couples processors that were not
coupled on previous, finer levels. Thus, the communication pattern also grows as problem
size increases, with the risk that for exascale problems, the maximum coarse grid stencil size
may produce unscalable communication patterns. This increase in communication is well
documented [16, 8]. In particular, the work [8] describes how even the best current practices
in hypre still result in a sharp increase in number of messages and in overall communication
cost when moving to coarse grids. For example, the model diffusion problem considered
in [8] resulted in a growth from 6 MPI sends on the finest level to 245 MPI sends on the
worst coarse grid for a machine with 65K cores. The result was that the time spent on some
coarse levels in the hierarchy, despite being much smaller in terms of number of nonzeros
and number of unknowns, was actually larger than the time spent on the finest level.

The need to improve coarse grid sparsity has been a main driver for research-based
improvements to hypre. Classical parallel AMG (i.e., classical modified interpolation and
Falgout coarsening [9]) is indeed a useful and powerful method, but at large numbers of
cores, the communication cost ruins what is otherwise a computationally optimal method.
As an example, consider Figure 1.1, where the time to solution for classical parallel AMG
is plotted for the simple 3D 7-point finite difference diffusion operator. A weak scaling
study is done with 25,000 unknowns per core on an Intel cluster with a fast InfiniBand
QDR interconnect, and the time grows dramatically with core count. This result led to the
important developments of aggressive coarsening [16] and extended interpolation [15], which
lead in this experiment to a reduction in coarse grid stencil size from the thousands to the
hundreds. The resulting time to solution is also commensurately reduced, in large part due
to reduced communication, as indicated by the “Best practices AMG” 1 plot in Figure 1.1.
However, even with these advancements, the time to solution is still growing in the figure,
leaving us room for improvement through communication reducing strategies.

Our strategy is to further reduce the communication costs by replacing PTAP with
a sparser approximation. While we focus on a purely algebraic approach, non-Galerkin
methods have already been explored in settings where geometric information is used to aid
the method [2, 20] in choosing sparsity patterns and matrix coefficients. This previous work
already indicates that a significant reduction in coarse grid stencil size is possible without a
serious reduction in multigrid convergence. The work [5] discusses, but does not experiment
with, a purely algebraic non-Galerkin coarse grid approach that computes each coarse grid
matrix row based on minimizing a quadratic functional. While this is an intriguing approach,
it has the goal of directly computing coarse grid equations (i.e., coarse grid matrix rows)
without the use of P . This is a significantly more difficult and expensive proposition than the
proposed approach. Our goal is simpler because we continue to use P to define a Galerkin
coarse grid and then sparsify this coarse grid to derive a more efficient multigrid scheme.

1For a complete discussion of the hypre parameters used for “Best practices AMG” and “Classical parallel
AMG”, see Section 5.3.
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Fig. 1.1: AMG weak scaling as motivation: parallel timings for classical parallel AMG and current
best practices for a simple model diffusion problem.

More recent work [17] has followed a similar path to ours in sparsifying coarse grid Galerkin
operators for smoothed aggregation (SA) [19], and while not fully developed or tested in
parallel, shows much promise.

Our overall strategy is to begin with an existing AMG method, and to remove entries
from the Galerkin operator each time a new level in the hierarchy is formed. Thus our
goal is to have sparser coarse grid operators than given by Galerkin coarse grids and to
also maintain AMG convergence when compared to the corresponding Galerkin coarse grid
method. The algorithm consists of two phases. The first phase chooses a sparsity pattern for
the new coarse grid operator, and the second phase removes or “collapses” entries in PTAP
that lie outside of that sparsity pattern. While we focus on the BoomerAMG package in
hypre, we believe that the approach is general enough to be applicable to most AMG codes.
To this end, we have also implemented the proposed method in a SA setting (see Section
5.2).

In Section 2, we first provide a mathematical motivation for our approach. In Section 3,
we state the resulting algorithm. In Section 4, we describe a near optimal non-Galerkin coarse
grid operator, and compare our method to the near optimal method for model diffusion
problems. In Section 5, we give serial results for a variety of diffusion and elasticity problems,
followed by parallel results for diffusion problems.

2. Mathematical Motivation. In this section, we provide the mathematical moti-
vation for our approach. Assume that an AMG method is applied to an SPD matrix, A.
During construction of an AMG hierarchy, the Galerkin coarse grid, Ag = PTAP , has been
computed, but the rows contain too many nonzeros, or the number of nonzeros per row is
growing too quickly. Our goal is to replace Ag with a sparser approximation, Ac, that is
spectrally equivalent in the sense that

∃α, β ∈ R+ such that α ≤ λ(A−1c Ag) ≤ β, (2.1)

with α and β both close to 1. Alternatively, we show in Theorem 2.1 that minimizing

θ ≡
∥∥I −AcA−1g ∥∥2 (2.2)

is a sufficient heuristic for defining Ac to produce an effective AMG method or preconditioner.
Building on results in [11], define the symmetric two-grid error propagator for AMG as

EK = (I −M−TA)ν(I − PK−1PTA)(I −M−1A)ν , (2.3)

where K is the coarse grid matrix and M defines the relaxation method (e.g., the diagonal
of A in the case of Jacobi). Let ETG denote the error propagator for the standard Galerkin
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case, K = Ag, and let EPTG denote the propagator for the perturbed two-grid case, K = Ac.
Next, define preconditioners BTG and BPTG induced by the equations

ETG = I −B−1TGA, (2.4a)

EPTG = I −B−1PTGA. (2.4b)

We now relate the spectral radius ρ(EPTG) of the perturbed method to that of the Galerkin
method. Similarly, we bound the condition number κ(B−1PTGA) in terms of κ(B−1TGA).

Theorem 2.1. Define ETG, EPTG, BTG, BPTG, and θ as above, and assume that Ag
and Ac are SPD. If θ < 1, then

κ(B−1PTGA) ≤
(

1 + θ

1− θ

)
κ(B−1TGA) (2.5)

and

ρ(EPTG) ≤ max

(
λmax(B−1TGA) · 1

1− θ
− 1, 1− λmin(B−1TGA) · 1

1 + θ

)
. (2.6)

Proof. Using a result from [11], we have that

λmax(B−1PTGA) ≤ λmax(B−1TGA) · max(λmax(A−1c Ag), 1)

= λmax(B−1TGA) · 1

min(λmin(A−1g Ac), 1)
, (2.7)

and similarly

λmin(B−1PTGA) ≥ λmin(B−1TGA) · 1

max(λmax(A−1g Ac), 1)
. (2.8)

Since Ag and Ac are SPD, we have that

ρ(I −A−1g Ac) = max
(
λmax(A−1g Ac)− 1, 1− λmin(A−1g Ac)

)
≤
∥∥I −A−1g Ac

∥∥
2

=
∥∥I −AcA−1g ∥∥2 = θ.

Hence, λmax(A−1g Ac) ≤ 1 + θ, λmin(A−1g Ac) ≥ 1− θ, and (2.5) follows from (2.7) and (2.8).
Since A and BPTG are SPD, (2.6) follows from the additional fact that

ρ(EPTG) = max(λmax(B−1PTGA)− 1, 1− λmin(B−1PTGA)).

2.1. Heuristics. In this section, we further motivate the algorithm heuristics based on
Theorem 2.1. Our basic goal is to construct an operator Ac with a given sparsity pattern
such that θ is small. To state this more rigorously, we first introduce some notation. Define
a matrix nonzero pattern (or sparsity pattern) as a set of tuples {(i, j)} and denote the space
of matrices with given sparsity pattern N by

N ≡ {A ∈ Rn×n : aij 6= 0 only if (i, j) ∈ N}. (2.9)

Similarly, define a vector nonzero pattern as a set of indices {i} and denote the space of
vectors with given nonzero pattern I by

I ≡ {x ∈ Rn : xj 6= 0 only if j ∈ I}. (2.10)

Let Nc and Ng represent the sparsity patterns of Ac and Ag, respectively. Then, our aim is to
define Nc ⊆ Ng and Ac ∈Nc such that θ is small. We begin by stating Ac as a perturbation
of Ag, i.e., let Ac ∈Nc, Ag ∈Ng, and

Ac = Ag + E, (2.11a)∥∥I −AcA−1g ∥∥2 =
∥∥EA−1g ∥∥2 = θ. (2.11b)
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Next, we develop heuristics for (2.11b) intended to reduce θ. First, we develop a heuristic
for “mid-range” or high energy modes, x,

Agx = λx, (2.12a)

where ‖x‖2 = 1 and λ is not small, say λ ∈ [ρ(Ag)/10, ρ(Ag)]. Our simple row-wise heuristic
uses Gershgorin rings by enforcing

‖ei‖1 ≤ γ ‖a
g
i ‖1 , (2.12b)

where (ei)
T and (agi )

T represent the ith row of E and Ag, and γ ∈ [0, 1]. Thus letting
maxi ‖agi ‖1 = kρ(Ag), we have

ρ(E) ≤γmax
i
‖agi ‖1 (2.12c)

ρ(E) ≤kγ ρ(Ag). (2.12d)

Last for the mode x in question, we can say∥∥EA−1g x
∥∥
2

=
1

λ
‖Ex‖2 ≤

ρ(E)

λ
≤ kγ ρ(Ag)

λ
. (2.12e)

For typical AMG problems from standard discretizations of the Poisson operator, k is small,
usually in the vicinity of 2 or 3. Thus for mid-range or high energy modes, the impact on θ
from equation (2.12e) is minimal for the γ chosen here, which are on the order 0.01.

Much of the preceding argumentation for mid-range to high-energy modes centers around
global eigenvalues, but it is important that the heuristic (2.12b) is row-wise. This locality
implies that enforcing (2.12b) for a specific γ targets the locally mid-range to high energy
modes, which may or may not correspond to the global mid-range to high energy modes.

The other case concerns x as a low energy eigenmode such that ‖x‖2 = 1, but Agx ≈ 0.
Then, θ is small when

Ex ≈ 0 if Agx ≈ 0. (2.13a)

Since AMG typically makes a priori assumptions about the local behavior of the near null
space, we can leverage that here as well to target (2.13a) as a heuristic. In particular, we
enforce accuracy for a set of vectors, B, that represent the near null space, i.e.,

AcB = AgB ⇔ EB = 0. (2.13b)

The standard choice for B is the constant, but could also be problem dependent, e.g., the
rigid-body modes for elasticity. For the most common case of B = 1, we guarantee (2.13b)
with classical AMG inspired stencil collapsing to remove the unwanted entries in Ag, so that
E1 = 0. Classical stencil collapsing was originally developed for constructing interpolation
operators and is well-known to be accurate for near null space modes. However, AMG
interpolation techniques do not explicitly address accuracy for higher energy modes, thus
necessitating heuristic (2.12b). When B contains multiple vectors, a generalized collapsing
strategy is used, which we detail later in Section 3.3.1.

While this approach is based on the above heuristics, it should be noted that much
of the successful classical AMG framework, e.g., strength-of-connection and interpolation
formulas, is based on similar heuristic assumptions. Put another way, if the constant does
not adequately represent a low energy vector x locally, then the classical AMG framework in
which we operate will already be problematic.

3. Algorithm. In this section, we first describe our algorithm for finding a suitable
sparsity pattern Nc for Ac. Second, we describe the algorithm for eliminating entries in Ag
based on Nc for the case of classical AMG scalar problems. The strategy is based on classical
AMG stencil collapsing. Third, we discuss one possible generalization of our algorithm to
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other PDEs, such as linearized elasticity, where the near null space of the matrix contains
more than the constant vector.

The heuristics in Section 2 guide our algorithmic choices. The process of finding the
sparsity pattern utilizes a drop tolerance that guarantees satisfaction of equation (2.12b),
which is the heuristic targeting accuracy in Ac for mid-range to high energy modes. The
process of stencil collapsing to eliminate entries is then done in such a way to target the
second heuristic (2.13b) and give Ac accuracy for the important near null space modes.

3.1. Choosing the Sparsity Pattern. The goal of the sparsity pattern choice is
to ensure an adequate nonzero pattern for spectral equivalence between Ag and Ac. We
approach this problem in a two phase manner. The first phase initializes the sparsity pattern
using the matrix graph of P and the fine grid operator A to target sufficient connections
in Ac to approximate the Galerkin matrix stencil. The second phase guaranties heuristic
(2.12b) to more directly target spectral equivalence for mid-range to high energy modes.

Minimal Sparsity Pattern. Considering the first phase, we must at a minimum
choose coarse grid sparsity patterns that allow for reproducing a good approximation to the
Galerkin matrix stencil. A central difficulty is the fact that it is not known how to define a
sufficient minimal sparsity pattern on the coarse grid for a scalable AMG method. Because
of this fact, our minimal sparsity pattern relies on heuristics.

We begin by noting that non-Galerkin strategies regularly succeed for geometric multigrid
and result in bounded stencil growth. In contrast for algebraic multigrid, stencils typically
grow because distance three (or farther) connections on the fine grid become distance-one
connections on the coarse grid. To target eliminating these coarse grid connections that
correspond to longer distance fine grid connections, we choose

N̂c = {(i, j) such that (PTI AP + PTAPI)ij 6= 0} (3.1)

as the minimal sparsity pattern, where PI refers to injection between the coarse and fine
grids. Typically P will have a connectivity pattern based on A, so it is easy to see that
PIAP will only connect distance one and two fine grid unknowns on the coarse grid. This
results in a sparsity pattern similar to those achieved by geometric multigrid schemes.

This initial pattern allows for important matrix entries in Ag with a small magnitude to

be preserved on coarse grids in N̂c. These entries would normally be dropped if the classical
strength-of-connection measure (which is based on magnitude) were used to compute N̂c.
Instead equation (3.1) uses the information (often of a geometric nature) present in the
matrix graph of A to maintain connections on the coarse grid between all fine grid distance
one C-point connections and some fine grid distance two C-point connections. (This assumes
that classical RS-AMG type interpolation and coarsening schemes are used.) So while we will
later use a collapsing scheme based on RS-AMG strength-of-connection and interpolation to
eliminate entries in Ag, the concept of strength-of-connection is not sufficient by itself to
construct Nc. We note that [17] uses a similar approach in a SA setting to obtain a sparsity
pattern.

To illustrate this issue, consider a simple example of grid-aligned anisotropic diffusion,
−uxx − εuyy = f , discretized with the standard five-point finite-difference stencil given by A
in (3.2a) below. The stencil for Ag in (3.2a) is that yielded by one level of semi-coarsening
(coarsening in the x-direction only) as obtained with RS-AMG. The stencil for Ac in (3.2b)
is a rediscretization of the problem on the coarse grid and provides a suitable non-Galerkin
coarse grid for Ag. However, if the connections in the direction of weak diffusion are dropped

in Ac to yield Ãc, the spectral equivalence bounds are h-dependent. Hence, the value of θ in



Non-Galerkin Coarse Grids for AMG 7

Theorem 2.1 approaches one, and we cannot guarantee an h-independent two-grid method.

A :=

 −ε
−1 (2 + 2ε) −1

−ε

 , Ag :=

 − ε
4 − 3

2ε − ε
4

− 1
2 + ε

2 (1 + 3ε) − 1
2 + ε

2
− ε

4 − 3
2ε − ε

4

 , (3.2a)

Ac :=

 −2ε
− 1

2 (1 + 4ε) − 1
2

−2ε

 , Ãc :=

 0
− 1

2 1 − 1
2

0

 , (3.2b)

To see this h-dependence, we do a simple derivation using the well known [7] eigenvectors
vi and eigenvalues λi of the classic second-order finite-difference operator with stencil[
−1 2 −1

]
. Letting this 1D stencil be defined on a grid with n points, the corresponding

eigenvalues and eigenvectors of Ac defined on an n× n grid are given by

λij =
1

2
λi + 2ελj , vij = vi ⊗ vj , (3.3a)

where the indexing i, j < n. The spectrum of Ãc can similarly be expressed with

Ãcvij =
1

2
λivij . (3.3b)

Using this knowledge of the spectra, we have

λ
(
Ãc
−1
Ac

)
=

1
2λi + 2ελj

1
2λi

= 1 + 4ελ−1i λj . (3.3c)

Hence,

1 ≤ λ
(
Ãc
−1
Ac

)
. 1 + 4ε

(
4− h
h

)
. (3.3d)

In summary, h-independence for θ is achieved when the closest small magnitude entries
in the direction of weak diffusion are included in the stencil for Ac. We avoid the h-dependent
sparsity pattern of Ãc by using N̂c from (3.1) as the minimal sparsity pattern, which for this
example is

N̂c :=

 ∗
∗ ∗ ∗
∗

 . (3.4)

The use of this heuristic minimal sparsity pattern is critical because the high- and low-energy
heuristics (2.12b) and (2.13a) do not prevent the sparsity pattern of Ãc from being chosen.
Moreover the classical concept of strength-of-connection cannot find a suitable sparsity
pattern here, and if it were employed to determine N̂c based on Ag, then the pattern for

Ãc would be chosen. On the other hand, it is important that the minimal pattern N̂c is
restrictive enough to exclude connections in Ag that represent longer distance connections
on the fine grid.

Improving the Sparsity Pattern. Next, we improve N̂c by enforcing the heuristic
(2.12b) through the following procedure, in order to target accuracy for mid-range to high
energy modes. Let the set of neighbors of i in Nc (i.e., the allowed nonzeros in row i) be

Nci = {j, such that the tuple (i, j) ∈ Nc}.

The procedure then begins by initializing the pattern Nc with the pattern of Ag. Entries are
then removed from Nc, starting with the smallest in magnitude, until any further removal of
entries would violate

2
∑
j /∈Nci

|agij | ≤ γ
∑
j

|agij |. (3.5)
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Algorithm 2: ComputeSparsity(Ag, P, PI)

1 Input: Ag {Galerkin operator}
2 P {Interpolation operator}
3 PI {Injection operator}
4

5 Nc ← ∅
6 for (i, j) such that agij 6= 0 do

7 Nc ← Nc
⋃
{(i, j)} {Initial pattern}

8

9 for i = 1 to nrows(Ag) do
10 Initialize set K: Km is index of mth smallest off-diagonal nonzero in row i
11 for m = 1 to |K| do
12 if 2

∑
j /∈Nci\Km

|agij | ≤ γ
∑
j |a

g
ij | {Equation (2.12b) satisfied}

13 then
14 Nci ← Nci \ Km {Remove entry Km}
15

16 for (i, j) such that (PTI AP + PTAPI)ij 6= 0 do
17 Nc ← Nc

⋃
{(i, j)} {Union with minimal pattern}

18 return Nc

Assuming classical stencil collapsing will be done to compute final matrix entry values (as
outlined in Section 3.2), this procedure guarantees (2.12b) for the final Ac, even before
the stencil collapsing step. The factor of 2 essentially represents the change made to Ag
when dropping an entry, plus the maximum change to Ag possible when collapsing that
entry to the allowed nonzero entries. Last, we ensure the minimal sparsity pattern from
(3.1), by taking the union of Nc and N̂c, i.e., we replace Nc with Nc

⋃
N̂c. Algorithm 2

gives a detailed description of this process. If a symmetric pattern is desired, Nc can be
symmetrized, such that if (i, j) ∈ Nc, then (j, i) is added to the set Nc as well.

3.2. Eliminating Entries in Ag for Scalar Problems. The goal when eliminating
entries in Ag to obtain Ac is to not change the action on the near null space of Ag. We rely
on the sparsity pattern choice from Section 3.1 to avoid changing the action on other modes.
We eliminate entries in Ag based on a classical AMG stencil collapsing approach, because this
approach has been used for decades [6, 14, 18] to develop interpolation formulas which are
accurate for the constant-based near null space modes critical for classical scalar problems.
In other words, this lumping procedure is (roughly speaking) as effective at preserving the
near null space as classical AMG interpolation is accurate for the near null space.

The dropping strategy begins by initializing Ac as a copy of Ag. Then, each acij 6= 0
such that (i, j) /∈ Nc is eliminated from Ac. The stencil collapsing algorithm eliminates acij
by adding a fraction of that entry to each of j’s strongly connected neighbors in row i. The
fractional lumping is done such that the row sum does not change and the local constant-
based near null space is thus unchanged. We begin by letting S be the strength-of-connection
matrix defined by the classical AMG measure with respect to Ag, and define the neighbors
of j in S as

Nsj = {k, such that sjk 6= 0}. (3.6a)

Next, we find U , which represents the strong connections of j shared by the nonzero pattern
of row i, that is

U = Nsj
⋂
Nci. (3.6b)

This set U represents the unknowns to which acij will be lumped. If strong neighbors are
found (U 6= ∅), we avoid changing the diagonal and remove i from U . This avoids changing
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Algorithm 3: NonGalerkin(Ag, S,Nc)
1 Input: Ag {Galerkin operator}
2 S {Strength-of-connection operator based on Ag}
3 Nc {Desired sparsity pattern}
4

5 Ac ← Ag {Initialize with Galerkin coarse grid}
6 for i = 1 to nrows(Ac) do
7 for j such that aij 6= 0 do
8 if j /∈ Nci then
9 U ← Nsj

⋂
Nci

10 if U = ∅ or U = {i} then
11 acii ← acii + acij {No neighbors, lump to diagonal}
12 else
13 U ← U \ {i} {Avoid changing diagonal}
14 σ =

∑
k∈U |sjk|

15 for k ∈ U do
16 acik ← acik + (|sjk|/σ) acij {Lump to neighbors}
17 acij ← 0

18 else
19 Do nothing

20 Ac ← 0.5(ATc +Ac) {Symmetrize}
21 for i = 1 to nrows(Ac) do
22 acii ← acii +

∑
j a

g
ij −

∑
j a

c
ij {Preserve row sum}

23 return Ac

the center of each row’s Gershgorin disc, if possible. If the diagonal entry of the matrix is
changed too much, then the scale of that equation will subsequently change, and we have
observed this being detrimental to performance. We then compute the fractions by which
the entry will be lumped, and carry out the fractional lumping such that the near null space
is preserved and E1 = 0:

σ =
∑
k∈U

|sjk| (3.6c)

acik ← acik + (|sjk|/σ) acij for k ∈ U. (3.6d)

Similar to classical stencil collapsing, if no strong neighbors are found (U = ∅), the entry is
lumped to the diagonal. After all entries are eliminated, the matrix Ac may be symmetrized,

Ac ← 0.5(ATc +Ac), (3.6e)

followed by diagonal lumping to preserve row sum,

acii ← acii +
∑
j

agij −
∑
j

acij . (3.6f)

Algorithm 3 describes in detail this stencil collapsing algorithm. In Section 3.3 we show
how this procedure produces an identical collapsing operator to that used by classical AMG
interpolation strategies.

While the stencil collapsing process preserves the row sum of the operator, the preserva-
tion of symmetry in line 20 changes this row sum. Thus, line 22 is required to modify the
diagonal and preserve the row sum. The values added to the diagonal in line 22 are typically
small, but necessary for maintaining accuracy for the near null space of the operator. From a
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different point of view, this symmetrization step can be thought of as a way of symmetrically
dropping entries, where lines 15 and 16 are replaced with

for k ∈ U do acik ← acik + (1/2)(|sjk|/σ)acij (3.7a)

acki ← acki + (1/2)(|sjk|/σ)acij , (3.7b)

followed by a fix up step that lumps to the diagonal to preserve row sum.
Remark 1. The symmetrization steps (3.7a) and (3.7b) disturb the property (2.12b),

which had been guaranteed with (3.5). We have not observed in our experiments that the
symmetrization step changes (3.5) significantly. So, while the property (2.12b) could be
guaranteed by another processing step after symmetrization, we have not found it to be
needed.

Remark 2. We lump entries to the diagonal in line 11 when no strong neighbors are
found (U = ∅). However, these entries may also be left in the matrix. In our experiments,
few entries were lumped to the diagonal, so the impact on complexity is small. This question
remains a topic of active research.

Remark 3. The stencil collapsing approach of Algorithms 2 and 3 does preserve
definiteness for M-matrices. An M-matrix is a common multigrid operator where the diagonal
is positive, all off-diagonals are non-positive, and row sums are non-negative. Thus by a
Gershgorin disc argument, M-matrices are at least positive semi-definite. When the proposed
approach operates on an M-matrix, all off-diagonals remain non-positive (off-diagonals
are changed only by adding a negative value); the diagonal remains positive; and the row
sum is unchanged. Thus the resulting Ac is still an M-matrix and hence definite. If the
symmetrization step is done, then Ac is SPD. If the interpolation method chosen preserves
the M-matrix property on coarse grids, then the proposed method will still yield an SPD
preconditioner. However for general matrices, there is no way to guarantee that the proposed
method preserves definiteness. Avoiding a loss of definiteness is a topic of active research,
but we note that in our experiments accelerating GMRES and CG with the method led to
similar results, implying that no significant loss of definiteness occurred for the test problems
considered.

In summary, this algorithm removes entries from a coarse grid operator in a way that
preserves the spectrum for constant-like near null space modes. The algorithm relies on the
choice of Nc to guarantee that the resulting coarse grid is accurate for mid-range to high
energy modes. Additionally, the algorithm relies primarily on local row-wise computations
that require little communication, making the method well suited for the parallel setting.

3.3. Eliminating Entries in Ag in a General Setting. In this section, we consider
the case where the matrix requires stencil collapsing that preserves multiple modes in B, i.e.,
we must enforce heuristic (2.13b) when B has multiple columns. The motivation is to extend
the proposed method to problems such as elasticity, where the near null space consists of
multiple vectors, e.g., the rigid-body modes. We first present classical stencil collapsing in
terms of the general approach, and then discuss one way to extend this perspective to the
multiple mode case.

Consider Figure 3.1, where the matrix graph relative only to unknown 1 is depicted, and
a local ordering is used. In the picture, unknowns 5 and 6 are to be eliminated from the
stencil, and collapsed to unknowns 2, 3 and 4. The gray dotted lines and associated weights
represent strength-of-connection couplings between 5 and 6 relative to their neighbors 2,
3 and 4. The strength-of-connection couplings have been normalized such that the two
connections for unknown 5 sum to 1, and likewise for unknown 6.

Let the set of off-diagonal unknowns that are maintained in row i = 1 be denoted by

Nci = {2, 3, 4}, (3.8)

and the set of off-diagonal unknowns to be eliminated be denoted by

χi = Ngi \ Nci = {5, 6}, (3.9)
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Fig. 3.1: Stencil collapsing example.

Then the corresponding generalization for classical stencil collapsing can be represented with
a local interpolation-like operator Gi, that operates only on nonzero entries, i.e.,

[
acii (aci |Nci)

T
]

=
[
agii (agi |Nci)

T (agi |χi)
T
] 1 0

0 I
0 Gi

 (3.10a)

where aci |Nci is the vector of off-diagonal entries after stencil collapsing, acii = agii, and

Gi =

[
1/2 0 1/2
2/3 1/3 0

]
. (3.10b)

Note that all other entries in row i of Ac are zero. The entry (Gi)0k represents the normalized
strength-of-connection entry between unknowns 5 and k, and (Gi)1k likewise corresponds
to unknown 6. More precisely, recall the definition of U ← Nsj

⋂
Nci for each row i from

Algorithm 3, and define Gi as

Gi ∈ R|χi|×|Nci| (3.11a)

(Gi)uv =
s(χi)u,(Nci)v∑
k∈U |s(χi)u,k|

(3.11b)

In summary, the operator Gi interpolates from unknowns in Nci to unknowns in χi
using normalized strength-of-connection values that interpolate between strongly connected
unknowns, and preserve near null space mode(s). For this example, all row sums of Gi
equal 1. In general, classical stencil collapsing will always result in a row sum of 1 in Gi.

Remark 4. Equation (3.10a) defines the general case of stencil collapsing, but it does
not allow for entries to be lumped to the diagonal as in the Algorithm 3. This can be observed
because the first column is all zero, except for the (1,1) entry. This was an engineering choice
meant to protect the diagonal entry from large changes during the process of fitting multiple
modes into the span of Gi, which can cause relatively large changes to entries. For the case
when an aij is being eliminated and this results in U = {i} or U = ∅, then that aij is not
eliminated and remains in the matrix. Lumping this entry to the diagonal is an option and
would result in a small change, but we choose to maintain a consistent approach here and
leave the diagonal unchanged in all cases. This does not change the resulting algorithmic
behavior because very few such aij are traversed in our test cases.

On the other hand in Algorithm 3, the changes to the diagonal are guaranteed to be
small through the choice of γ. So, we allow these small changes in order to drop entries as
aggressively as possible.

3.3.1. Accommodating Multiple Near Null Space Modes. We now present the
generalized stencil collapsing case, where Gi is post-processed to accommodate multiple
near null space modes. This set of vectors B is usually specified on the finest level, and
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Algorithm 4: Generalized NonGalerkin(Ag, S,Nc, B)

1 Input: Ag {Galerkin operator}
2 S {Strength-of-connection operator based on Ag}
3 Nc {Desired sparsity pattern}
4 B {Near null space modes for Ag, ordered in importance}
5

6 Ac ← Ag {Initialize with Galerkin coarse grid}
7 for i = 1 to nrows(Ac) do

8 ki ← max
(⌊
|Nci|
2

⌋
− 2, 1

)
{Use first ki columns of B}

9 Compute Gi {Equation (3.11)}
10 F ← B|χi −GiB|Nci {Compute update to Gi}
11 for j = 1 to nrows(Gi) do
12 Let f and g be row j of F and Gi, respectively.

13 u← argminu ‖(B|Nci)TuT − fT ‖22
14 g← g + u

15

[
acii (aci |Nci

)T
]

=
[
agii (agi |Nci

)T (agi |χi
)T
] 1 0

0 I
0 Gi

 {Equation (3.10a) }

16 aci |χi ← 0 {Zero out entries not in pattern}
17 return Ac

then transferred to each coarse level with the restriction operator PTI B. Multigrid methods
typically require a set of such modes for construction of interpolation. Even classical AMG
methods implicitly assume B = 1 by virtue of the interpolation formulas which are explicitly
designed to preserve the constant.

Our strategy updates the Gi from classical stencil collapsing in a least-squares fashion
so that Gi interpolates multiple vectors B accurately. The intention is that the minimal
update results in a Gi with weights that still favor strong connections. More precisely, we
update Gi in a minimal 2-norm sense to fit B and satisfy

GiB|Nci
= B|χi

, (3.12a)

where

B|Nci
= Buv for u ∈ Nci and v ∈ {0, 1, 2, ...,ncols(B)} (3.12b)

B|χi
= Buv for u ∈ χ and v ∈ {0, 1, 2, ...,ncols(B)}. (3.12c)

This property guaranties that the action of AcB = AgB. To see how (3.12a) accomplishes
this, take equation (3.10a) and right multiply by[

bTi
B|Nci

]
, (3.13)

using the identity (3.12a). The quantity bTi represents B restricted to the ith row. We now
describe in Algorithm 4 the generalized approach to stencil collapsing. For the experiments
considered here, the sparsity pattern argument Nc is generated by Algorithm 2.

In addition to Remark 4, there are some important algorithmic notes to make. When
solving PDE systems, such as elasticity, where an unknown j belongs to only one of many
PDEs, it is critical to limit the collapsing to occur between unknowns in the same PDE.
This can easily be implemented in Algorithm 4 by pre-filtering the strength matrix S with

sij ← 0 if PDE num(i) 6= PDE num(j), (3.14)
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where the function PDE num() returns the PDE number (say 0, 1 or 2) for an unknown. In
order to compute the PDE number for a coarse unknown, we utilize the C/F splitting present
at each level to find the corresponding fine grid unknown for each coarse grid unknown.
Another algorithm note concerns the computation of line 13 where (B|Nci)T may be ill-
conditioned. This system is currently solved through an SVD approach and determining
appropriate singular value cut-offs is a topic of future work.

Remark 5. We have observed issues with over fitting and the computation of Gi. As
an example, let Gi have 4 nonzeros per row, and B contain 4 or 5 vectors, then the process
of computing Gi to exactly preserve all modes is ill conditioned, i.e., small changes to B can
result in large changes to Gi. We have observed this phenomenon for the model 2D rotated
anisotropic diffusion problems in the results section, when B equals the constant, linears and
quadratics. Here, the coefficients computed for Gi would sometimes vary by 2 or 3 orders of
magnitude. The resulting coarse grid stencil became inaccurate, and the overall AMG cycle
deteriorated or diverged as a result. As a solution, we take only the first ki columns of B
when computing Gi. It is assumed that B is ordered in importance, so that the first ki vectors
are the most critical ones. For this experiment, the vectors were ordered constant, linears
and quadratics, so that when vectors were discarded from B, they represented a quadratic
function. We choose ki to be significantly smaller than the number of nonzeros per row in Gi,
or k = |Nci|/2, where |Nci| is the number of unknowns in Nci. Thus, the number of modes
in B used to compute Gi can change with i. While this strategy is purely an engineering
choice, it is a reasonable number of modes to choose from B to avoid over fitting.

4. Evaluating the Accuracy of the Stencil Collapsing Approach. In this section,
we describe a near optimal non-Galerkin coarse grid operator, and compare it to our method
for model diffusion problems. Let (aci )

T be the ith row of Ac and let λj and vj be the
eigenvalues and eigenvectors of Ag. Below, we derive an upper bound for θ in (2.2) in terms
of aci , λj and vj . In (4.1d), we write x =

∑
j αjvj , with αj ∈ [0, 1] and

∑
j |αj | = 1. In

(4.1e), we can reverse the order of the min-max problem because it is quadratic in αj and
acij . A useful upper bound on the minimal θ is then

θ2min = min
Ac∈Nc

∥∥(I −AcA−1g )
∥∥2
2

(4.1a)

= min
Ac∈Nc

max
‖x‖2=1

∥∥(I −AcA−1g )x
∥∥2
2

(4.1b)

= min
Ac∈Nc

max
‖x‖2=1

∑
i

((x)i − (aci )
TA−1g x)2 (4.1c)

= min
Ac∈Nc

max
‖α‖2=1

∑
i

∑
j

αj(vij − λ−1j vTj aci )

2

(4.1d)

= max
‖α‖2=1

min
Ac∈Nc

∑
i

∑
j

αj(vij − λ−1j vTj aci )

2

(4.1e)

= max
‖α‖2=1

∑
i

min
ac
i∈Nci

∑
j

αj(vij − λ−1j vTj aci )

2

(4.1f)

≤
∑
i

min
ac
i∈Nci

∑
j

(
vij − λ−1j vTj aci

)2
. (4.1g)

To compute our near optimal Ac, we note that the aci which satisfy equation (4.1g) and
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thus ultimately bound θmin are equivalent to

argmin
ac
i∈Nci

∥∥∥∥∥∥∥∥∥


vi1
vi2
...

vin

−


(1/λ1)(vT1 )|Nci

(1/λ2)(vT2 )|Nci

...
(1/λn)(vTn )|Nci

 (aci )|Nci

∥∥∥∥∥∥∥∥∥
2

2

. (4.2)

Hence, the near optimal Ac is simply constructed by solving (4.2) for each row i.
To use this tool, we compared our method to the near optimal Ac on a variety of model

2D diffusion problems which yielded small enough matrices that the computation of the near
optimal Ac was possible. We asked two questions. One, is the two-level AMG convergence
rate significantly better with the near optimal method when compared to the proposed
approach? Two, what sparsity pattern is necessary to achieve equivalent performance to the
Galerkin approach when using the near optimal method?

As an example, consider the Q1 bilinear finite element discretization on a regular
structured grid with Dirichlet boundaries of the rotated anisotropic diffusion equation

−(c2 + εs2)uxx − 2(1− ε)cs uxy − (εc2 + s2)uyy = f, (4.3)

where ε = 0.001, c = cos(ϕ), s = sin(ϕ) and ϕ is the angle of rotation. We choose the angle
ϕ = π/4 (which is a particularly difficult angle for the stencil collapsing approach, on a 15×15
grid). The stencil at the center point on the first coarse grid is given in Figures 4.1a, 4.1b,
4.1c and 4.1d for the cases of the Galerkin approach, and for the proposed stencil collapsing
approach with γ = 0.03, γ = 0.1 and γ = 1.0. The asymptotic convergence rates for Figures
4.1a, 4.1b, 4.1c and 4.1d are 0.23, 0.23, 0.40 and 0.47, respectively. The corresponding
convergence rates and stencils for the near optimal approach are nearly identical and are
hence omitted. The one exception was for γ = 1.0, where the near optimal approach did
yield a better convergence rate and slightly different coefficient values in the cross-stream
direction. Thus, the conclusion is two-fold. One, that the longer distance connections
present in Figure 4.1b, but not present in Figures 4.1c and 4.1d, are necessary to regain the
performance of the Galerkin approach when using either the near optimal or stencil collapsing
approach. Two, the coefficients computed by stencil collapsing yield similar performance to
that achieved by fitting the eigenvectors in the near optimal approach.

A number of different angles and finite difference approximations for isotropic and
anisotropic examples were explored with similar results. So, this tool led us to conclude that
in general a broader sparsity pattern than PTI AP was needed and that γ = 0.03 yielded
such a sparsity pattern for the diffusion problems examined. This tool also allowed us to
conclude that the coefficients computed by stencil collapsing are as good as the near optimal
approach for smaller values of γ.

5. Results. In this section, we examine the numerical performance of the method for
a variety of diffusion test problems and two 3D elasticity problems. In general, the tests use
a V-cycle of RS-AMG to accelerate GMRES with a relative residual tolerance of 10−8. The
tests also maintain identical solver parameters and only toggle the non-Galerkin method on
and off, so that the standard Galerkin approach and the new method can be fairly compared.
The serial tests were done using the PyAMG [4] package, while the parallel tests were done
using the hypre [10] package, version 2.8.

5.1. Scalar Diffusion Results. In this section, we examine the proposed non-Galerkin
method for scalar diffusion problems. V(2,2) cycles of classical RS-AMG using weighted-
Jacobi are used to accelerate GMRES with a relative residual tolerance of 10−8. We choose
a V(2,2) cycle with weighted-Jacobi so that our relaxation scheme compares well with the
V(1,1) hybrid Gauss-Seidel cycle used in parallel in Section 5.3. In particular, weighted-
Jacobi parallelizes well and we choose a V(2,2) cycle because a V(1,1) cycle would exhibit
significantly slower AMG convergence than a V(1,1) hybrid Gauss-Seidel cycle for the test
problems considered here. The Jacobi weight is 1/ρ(D−1A), where D is the diagonal of A.
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(a) Galerkin (b) Non-Galerkin γ = 0.03

(c) Non-Galerkin γ = 0.1 (d) Non-Galerkin γ = 1.0

Fig. 4.1: Center point stencils for first coarse grid operators, comparing Galerkin and stencil
collapsing based non-Galerkin for various γ.

GMRES is restarted every 15 iterations. The other RS-AMG parameters are direct inter-
polation, a strength-of-connection tolerance of 0.35, and first and second pass Ruge-Stüben
C/F coarsening [14]. For the non-Galerkin algorithm, no post-processing symmetrization of
the coarse grid operator is used, because it did not qualitatively change convergence. For all
of the test problems in this subsection, including the 3D problems, 4 consecutive refinements
of the initial mesh are considered in order to yield increasing matrix sizes of roughly 16 000,
64 000, 256 000 and 1 000 000.

The tables of results contain the following columns. “Max Stencil” reports the maximum
stencil size over all levels, and is used as a proxy for the amount of communication induced by
the AMG hierarchy. The term ρAMG = (‖rk‖2 / ‖r0‖2)1/k refers to the average convergence
rate, where rk is the final residual value upon convergence after k iterations. “Op. Comp.”
refers to operator complexity, which is the total number of nonzeros stored in the hierarchy,
divided by the number of finest level nonzeros. “Work” refers to work per digit of accuracy,
i.e., the amount of work, in fine grid matrix-vector multiplications, required to reduce the
residual by one order of magnitude. This quantity is computed with c/| log10(ρAMG)|, where
c is the cycle complexity. The cycle complexity is the cost in floating-point operations
(relative to one fine grid matrix-vector multiply) to apply one V-cycle. For a V(2,2) cycle, c
equals 4 times the operator complexity because 4 relaxations are done at each level (2 going
down and 2 going up). Work is particularly useful when comparing methods with differing
operator complexities because similar iteration counts can represent vastly different amounts
of work. A variety of γ values are experimented with, including the case of γ = 1.0, which
is equivalent to using N̂c as the sparsity pattern, and γ = 0.0, which is equivalent to using
the Galerkin coarse grid approach. The overall goal of the tests is to reduce stencil size and
hence parallel communication while only negligibly affecting AMG convergence.

In 2D, we consider the rotated anisotropic diffusion equation (4.3). The discretizations
considered are standard second-order finite differencing and Q1 bilinear finite elements on
regular structured grids with Dirichlet boundaries. Experiments are run for a variety of ϕ
values, with worst case angles occurring for roughly ϕ ≈ 2π/16, which is the test case we
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choose to show in Table 5.1. While this is a worst case, it is still representative of other angles,
in that as γ decreases to [0.01, 0.03], the proposed approach attains similar convergence and
nearly identical work units to the Galerkin approach (γ = 0.0). Overall, the non-Galerkin
approach is robust for these problems, and provides a reduction in operator complexity and
stencil size.

γ refinement ρAMG Op. Comp. Work Max stencil

1.0 0 0.28 2.3 17 16
1 0.44 2.3 25 16
2 0.51 2.3 32 16
3 0.56 2.3 36 17

0.03 0 0.31 2.3 17 16
1 0.39 2.3 23 16
2 0.46 2.3 28 16
3 0.50 2.3 31 16

0.01 0 0.28 2.5 19 21
1 0.31 2.6 21 22
2 0.35 2.6 23 21
3 0.37 2.6 24 22

0.0 0 0.26 2.7 19 33
1 0.28 2.7 20 33
2 0.30 2.8 21 33
3 0.32 2.8 23 33

Table 5.1: 2D non-Galerkin results for various γ, rotated anisotropic diffusion by angle of ϕ = 2π/16,
AMG preconditioning GMRES.

The next 2D experiments concern classic coefficient jump problems. We experimented
with example problems from [1] and give the results for problem IV from [1]. Here, the
diffusion equation is given by

−∇ · (d∇u) = f, (5.1)

where d is the jumpy coefficient function and the domain is depicted in Figure 5.1 with
Dirichlet boundary conditions. The function d is 1000 in the shaded sawtooth region and 1
elsewhere. The grid is regular, with the coefficient jumps occurring on grid lines. However,
the jumps will not be grid-aligned on the coarser grids. The discretization is the classic
5-point finite differencing scheme from [1] for coefficient jump problems. The results are
similar to the other 2D experiments, in that as γ decreases to [0.01, 0.03], the proposed
approach exhibits similar behavior to the Galerkin approach. Overall, the non-Galerkin
approach is robust for these problems, but does not provide much reduction in operator
complexity and stencil size. However, this is not surprising, because the original Galerkin
approach already exhibited modest complexities and stencil size growth. The main purpose
of this experiment is to show the robustness of the method.

The next set of experiments examine 3D diffusion operators. We examine the problem

uxx + εyuyy + εzuzz = f (5.2)

using classic second-order 7-point finite differencing approximations on regular grids and also
linear tetrahedral discretizations on unstructured isotropic meshes. The PDE coefficients
considered are εy = 1.0, εz = 0.001 and εy = 1.0, εz = 1.0.

The results are broadly similar, so we give a representative set in Table 5.3 for the
linear tetrahedral example and isotropic coefficients (εy = 1.0, εz = 1.0). The non-Galerkin



Non-Galerkin Coarse Grids for AMG 17

16#15#13#11#9#7#5#3#1#0#0#
1#

3#

5#

7#

9#

11#

13#

15#
16#

Fig. 5.1: Sawtooth coefficient jump domain.

γ refinement ρAMG Op. Comp. Work Max stencil

1.0 0 0.25 2.16 14 11
1 0.30 2.18 17 16
2 0.51 2.19 30 14
3 0.67 2.19 50 15

0.03 0 0.14 2.18 10 12
1 0.15 2.19 11 14
2 0.20 2.20 12 15
3 0.25 2.20 15 20

0.01 0 0.14 2.19 10 13
1 0.16 2.19 11 15
2 0.20 2.20 12 17
3 0.26 2.20 15 20

0.0 0 0.15 2.20 11 16
1 0.17 2.20 11 17
2 0.20 2.21 13 23
3 0.28 2.21 16 23

Table 5.2: 2D non-Galerkin results for various γ, sawtooth coefficient jump problem, AMG precon-
ditioning GMRES.

approach is robust, preserves the Galerkin AMG convergence rate and yields a stencil size
reduction of 50%. One important note is that the operator complexity reduction is not always
as dramatic as depicted in Table 5.3. For instance for the 7-point finite-differencing Poisson
operator, the operator complexity reduction is only from 2.9 to 2.8, but the non-Galerkin
approach still enjoys a roughly 50% stencil size reduction.

5.2. Elasticity Results. We next examine the proposed approach for isotropic lin-
earized elasticity problems, where B ∈ Rn,6 and is equal to the six rigid body modes.
Linearized elasticity is defined by

−div
(
λ tr

((
∇u +∇uT

)
/2
)
I + µ

(
∇u +∇uT

))
= f, (5.3)
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γ refinement ρAMG Op. Comp. Work Max stencil

1.0 0 0.18 1.4 8 45
1 0.26 1.5 10 72
2 0.32 1.7 14 77
3 0.40 1.8 18 78

0.03 0 0.18 1.5 8 52
1 0.24 1.6 10 76
2 0.30 1.8 14 81
3 0.36 1.9 17 81

0.0 0 0.18 1.6 8 73
1 0.24 1.8 11 91
2 0.30 2.2 17 150
3 0.38 2.6 24 174

Table 5.3: 3D non-Galerkin results for two γ choices, isotropic diffusion, AMG preconditioning
GMRES.

where λ and µ are the Lamé parameters, I is the identity matrix and tr() is the trace function.
The GetFem++ package [13] is used to discretize. The test problem examined is a steel
tripod corresponding to the mesh in Figure 5.2. Here, the tripod is discretized using linear
tetrahedral elements and a downward external force is applied to the top of the tripod.

Fig. 5.2: Example tetrahedral tripod mesh.

We experiment with a different AMG solver than in Section 5.1, because the interpolation
operators for RS-AMG only capture the constant vector. Hence, the experiments with RS-
AMG show no performance difference when comparing Algorithm 3 with Algorithm 4 and
B equal the six rigid-body modes. Essentially, if PTAP does not accurately represent the
rigid-body modes (as in the case of RS-AMG), then the stencil collapsing approach does not
need to account for them. So, we consider instead a smoothed aggregation (SA) approach
[12] that allows span(P ) to capture all six of the rigid-body modes. Hence, PTAP accurately
represents all six of the rigid-body modes, thus making it important for the stencil collapsing
approach to account for all six modes. We also choose a SA approach to show the generality
of the proposed non-Galerkin method.

While SA generally does not associate C-points with the coarse grid, this set of unknowns
is readily available from many standard aggregation algorithms [19] where the aggregate
seed points can be used to form the set of C-points. This is done explicitly in [12] where
the set of C-points is used to form PI . The other parameters for the SA method [12] are as
follows. V(2,2) cycles of weighted-Jacobi are again used to accelerate GMRES with a relative
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stopping criteria of 10−8 and a restart value of 15. The Jacobi weight is 1/ρ(D−1A), where
D is the diagonal of A. For consistency, the strength of connection method is the classical
Ruge-Stüben method with a tolerance of 0.35. Standard greedy aggregation [19] is used.

The convergence results for the tripod example are given in Table 5.4. Three consecutive
refinements are considered for increasing matrix sizes of roughly 3 000, 17 000 and 109 000.
The second column denotes the values for B chosen, with “RBM” standing for the six
rigid-body modes, and B = 1 representing the standard stencil collapsing of Algorithm 3.
The choice of B = 1 is similar to collapsing with the three displacement rigid-body modes,
which likely explains why Algorithm 3 performs well.

The proposed approach matches the convergence rate of the Galerkin approach for
γ = 0.03, with a significant drop in maximum stencil size. For smaller values of γ, such as
γ = 0.03, the results are nearly identical for B equalling the six rigid-body modes or the
constant. This is not surprising because classical multigrid schemes based on B = 1 are
known to be effective for some simpler elasticity problems, such as this example. The use of
the six rigid-body modes becomes important when the non-Galerkin algorithm is stressed
with the very restricted sparsity pattern of γ = 1.0. Here, collapsing with respect to the
rigid body modes, but not B = 1, allows for regaining the original work per digit of accuracy
numbers of the Galerkin approach.

γ B refinement ρAMG Op. Comp. Work Max stencil

1.0 1 0 0.45 1.2 12 42
1 0.50 1.2 16 72
2 0.64 1.2 24 97

1.0 RBM 0 0.44 1.2 12 42
1 0.48 1.2 14 72
2 0.54 1.2 18 97

0.03 1 or RBM 0 0.40 1.3 11 56
1 0.44 1.4 15 138
2 0.48 1.5 18 245

0.0 1 or RBM 0 0.39 1.4 11 69
1 0.43 1.5 16 182
2 0.47 1.6 20 346

Table 5.4: Elasticity non-Galerkin results for various γ and collapsing strategies, AMG precondition-
ing GMRES.

5.3. Parallel Results. In this section, we present parallel results for the simple scalar
7-point 3D isotropic diffusion finite difference operator with Dirichlet boundary conditions.
The goal is to demonstrate the potential of the algorithm to speedup parallel AMG solve
phase times. We therefore choose the simple 7-point model problem that nonetheless yields
an unscalable growth in stencil size. The parallel stencil collapsing is identical to the serial
algorithm, with a few exceptions. The collapsing is done with a binary strength-of-connection
matrix (i.e., each strong connection has a value of 1.0 and each weak connection has a value
of 0.0). This is done because binary strength-of-connection matrices are what is currently
available in hypre. Implementing the complete stencil collapsing approach from Algorithm 3
using standard strength matrices is future work.

The parallel studies carried out are weak scaling tests with 25,000 unknowns per core
on two different machines, one with a fast InfiniBand QDR interconnect and 6144 cores
and the other with a slow InfiniBand DDR interconnect and 4096 cores. Thus, the largest
problem sizes considered are 153.6 and 102.4 million unknowns, respectively. V(1,1) cycles
using hybrid Gauss-Seidel [3] are used to precondition GMRES to within a relative residual
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tolerance of 10−8 using a restart parameter of 10. We note that the non-Galerkin algorithm
has also been run in symmetrized mode with CG and the results have not qualitatively
differed from the below results.

Two different AMG scenarios are explored in parallel, one that uses a “best practices”
set of parameters, which the hypre developers commonly recommend, and the other that
uses classical parallel AMG parameters. The hypre parameters for best practices are hybrid
symmetric Gauss-Seidel (relax type 6), HMIS [16] coarsening (coarsen type 10), extended
classical modified interpolation [15] (interpolation type 6), aggressive coarsening [16] on the
finest level (aggressive num levels 1), truncated interpolation to 5 entries per row (PMaxElmts
option equals 5) and a strength of connection tolerance of 0.25. The hypre parameters for
classical parallel AMG are hybrid symmetric Gauss-Seidel (relax type 6), classical modified
interpolation (interpolation type 0), Falgout coarsening [9] (coarsen type 0), and a strength
of connection tolerance of 0.55. We note that it is typical to use a higher strength tolerance
in this case. We examine the non-Galerkin approach for γ = 0.03, which is a representative
γ value that worked well over all the serial test problems, and for γ = 0.0, which corresponds
to standard Galerkin AMG

We first report in Tables 5.5 and 5.6 the convergence, operator complexity, work and
maximum stencil size over all levels for the best practices parameters and classical parallel
AMG parameters, respectively. We do this for the four largest core counts (problem size
equals 25K times the core count). The results are similar to the serial case, in that the
non-Galerkin approach attains a similar AMG convergence rate, but results in a significantly
smaller maximum stencil size. For the case of classical parallel AMG, which has always been
plagued by high complexities, there is also a significant reduction in operator complexity
that makes this method more practical. In addition, the convergence rate for non-Galerkin
is noticeably better for classical parallel AMG, although the reasons for this are difficult
to discern in the multilevel setting. In the two-level setting, the convergence rates do not
significantly differ.

γ ncores ρAMG Op. Comp. Work Max stencil

0.03 768 0.33 1.25 10 82
1536 0.33 1.26 10 81
3072 0.36 1.26 11 85
6144 0.37 1.25 11 96

0.0 768 0.33 1.37 11 184
1536 0.36 1.37 12 188
3072 0.40 1.37 14 191
6144 0.39 1.37 13 206

Table 5.5: “Best practices” AMG results for two γ choices, isotropic diffusion, AMG preconditioning
GMRES.

Next, we report speedup and time to solution for the AMG solve phase in order to
verify that the observed reduction in stencil size results in a faster runtime. Since this is a
feasibility study and in order to simplify the parallel implementation, the non-Galerkin part
of the AMG setup phase has not been written with attention to performance. So, we do not
report setup phase timings, as they would not be informative. We do note that even with
the unoptimized code, we always see a reduction in setup phase time for classical parallel
AMG, and for best practices AMG, some machines also already show a reduction in setup
phase time. A full timing comparison is ongoing work and will require optimizing the setup
phase and parameters such as different γ choices on coarse levels.

Figures 5.3a and 5.3b show the speedup and timings for the best practices scenario and
classical parallel AMG scenario, respectively, on the machine with a fast interconnect. The
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γ ncores ρAMG Op. Comp. Work Max stencil

0.03 768 0.19 4.8 27 381
1536 0.20 5.0 29 380
3072 0.20 5.2 30 435
6144 0.21 5.5 32 463

0.0 768 0.22 8.4 51 1266
1536 0.24 9.0 58 1286
3072 0.27 9.4 66 1405
6144 0.29 9.7 72 1479

Table 5.6: “Classical parallel AMG” results for two γ choices, isotropic diffusion, AMG precondi-
tioning GMRES.

speedup is on the left axis for the dotted line, and the time to solution for the AMG solve
phase is on the right axis for the two solid lines depicting the Galerkin and non-Galerkin
approaches. For the best practices scenario, there is a speedup of 15–20%, but for the
classical parallel AMG scenario, the speedup grows to 250%. Figures 5.4a and 5.4b depict
the similar results for the machine with a slow interconnect, but with more pronounced
speedups of 150% and 400% for the best practices and classical parallel AMG scenarios,
respectively.

These results are encouraging, in part because the speedup grows with number of cores.
Thus, we expect this approach to yield even better speedups when moving to current Petascale
machines (106 cores) and also to next generation exascale machines (106–109 cores).

Moreover, the results raise the question whether the current best practices in AMG can
be avoided altogether, in favor of a more classical AMG approach that leverages non-Galerkin
coarse grids. For instance, if the overall time is compared between the best practices and
classical parallel AMG scenarios for each machine, it is observed that the non-Galerkin
approach for the classical scenario is competitive with the Galerkin approach for the best
practices scenario. This rethinking of parallel AMG is attractive because the current best
practices for reducing stencil size and communication (i.e., aggressive coarsening and extended
interpolation) also worsen the AMG convergence rate, whereas non-Galerkin coarse grids
target the same reduced stencil size and associated reduced communication, but with no
deterioration in the AMG convergence rate. For example, our parallel tests for a 27-point
finite element discretization of the Poisson problem already show the fastest AMG solve
phase time is for classical parallel AMG coupled with the non-Galerkin approach. Regardless
of which AMG scenario used, the non-Galerkin approach provides a parallel performance
benefit.

6. Comments/Conclusions. In conclusion, the proposed non-Galerkin approach is
an effective method at reducing coarse grid stencil size and parallel communication, while
having a negligible effect on the AMG convergence rate for the problems considered here. In
particular, the method relies primarily on row-wise computations in parallel, thus making it
a relatively inexpensive method with respect to communication. Additionally, as indicated
by our experiments, the proposed method is applicable to most AMG codes, include classical
RS-AMG and SA.

There are some outstanding issues, including the importance of maintaining symmetry
and definiteness on coarse grids. While theoretically attractive, we have not observed
maintenance of symmetry being critical to performance, even out to 150 million unknowns
in parallel. However, we will maintain this option in our code as we continue experiments on
more real world test problems. Maintaining definiteness on coarse grids, outside of the case
of M-matrices, will continue to be a future research issue.
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Fig. 5.3: Speedup and AMG solve phase timings comparing non-Galerkin AMG and Galerkin AMG
on machine with fast network.
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Fig. 5.4: Speedup and AMG solve phase timings comparing non-Galerkin AMG and Galerkin AMG
on machine with slow network.
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